A Sharp Form of the Discrete Hardy Inequality and the Keller–Pinchover–Pogorzelski Inequality
نویسندگان
چکیده
We give a short proof of recently established Hardy-type inequality due to Keller, Pinchover, and Pogorzelski together with its optimality. Moreover, we identify the remainder term which makes it into an identity.
منابع مشابه
The Sharp Sobolev Inequality in Quantitative Form
A quantitative version of the sharp Sobolev inequality in W (R), 1 < p < n, is established with a remainder term involving the distance from extremals.
متن کاملA new restructured Hardy-Littlewood's inequality
In this paper, we reconstruct the Hardy-Littlewood’s inequality byusing the method of the weight coefficient and the technic of real analysis includinga best constant factor. An open problem is raised.
متن کاملA Geometric Characterization of a Sharp Hardy Inequality
In this paper, we prove that the distance function of an open connected set in R with a C boundary is superharmonic in the distribution sense if and only if the boundary is weakly mean convex. We then prove that Hardy inequalities with a sharp constant hold on weakly mean convex C domains. Moreover, we show that the weakly mean convexity condition cannot be weakened. We also prove various impro...
متن کاملSharp Hardy-littlewood-sobolev Inequality on the Upper Half Space
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...
متن کاملSharp Form for Improved Moser-trudinger Inequality
S2 (|∇u| + 2u)}, and the equality holds if and only if eg is a metric of constant curvature. In the study of deforming metrics and prescribing curvatures on S, this inequality is often used to control the size and behavior of a new metric eg0 near a concentration point. With certain “balance” condition on the metric one would guess that if the metric concentrates, it should concentrate at more ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Mathematical Monthly
سال: 2022
ISSN: ['1930-0972', '0002-9890']
DOI: https://doi.org/10.1080/00029890.2022.2011569